AI Prompt 工程与全栈开发路线图
文档定位与使用说明
本文档适用对象: 具备至少一门编程语言基础 (Python/Java/JavaScript),希望系统性掌握 AI 能力的开发者
核心目标: 以生成高质量 Prompt 为核心,帮助开发者从工具使用逐步成长为能够设计企业级 AI 系统的全栈工程师
学习路径: Level 1 (工具驱动) → Level 2 (RAG 应用) → Level 3 (Agent 架构) → Level 4 (生产部署),每个阶段 2-3 周,总计 9-12 周
核心理念
设计原则
- ⭐ 架构模式优先于工具学习: 理解 Sidecar Pattern、异步解耦、结构化输出等架构模式
- 扩展而非深读: 将 Dify 等平台视为黑盒,专注于扩展和集成
- ⭐ 评估左移: 从早期就建立 Golden Dataset 和自动化评估
- 可观测性: 建立完整的 Agent 行为追踪和质量监控体系
- ⭐ 双轨并进: 既掌握快速交付工具 (Dify),又具备深度定制能力 (LangGraph)
技术路线双轨制
- ⭐ 生产力轨道 (80% 场景): Dify, Ollama, MCP —— 快速解决通用需求
- 硬实力轨道 (20% 核心难题): PyTorch, LangGraph, VectorDB —— 攻克复杂问题
能力演进路径
快速导航
| 阶段 | 周期 | 核心目标 | 优先级 |
|---|---|---|---|
| ⭐ Level 1: AI-Native 工作流 | 第 1-2 周 | 建立 AI 优先的开发习惯,搭建本地 AI 基础设施 | 必须先学 |
| ⭐ Level 2: RAG 应用开发 | 第 3-5 周 | 掌握检索增强生成 (RAG),理解异构系统架构 | 核心能力 |
| Level 3: Agent 架构 | 第 6-8 周 | 掌握智能决策与路由,建立可观测性和审计能力 | 进阶 |
| Level 4: 全栈落地 | 第 9-12 周 | 完成前后端全栈交付,掌握模型微调和生产部署 | 高级 |
| Prompt 质量评估与总结 | - | Prompt 质量标准、技能组合、面试突击清单 | 参考 |
关键成功因素
- ⭐ 架构模式优先于工具学习: 理解 Sidecar Pattern、异步解耦、结构化输出等架构模式
- 扩展而非深读: 将 Dify 等平台视为黑盒,专注于扩展和集成
- ⭐ 评估左移: 从 Level 2 开始就建立 Golden Dataset 和自动化评估
- 可观测性: 建立完整的 Agent 行为追踪和质量监控体系
- ⭐ 双轨并进: 既掌握快速交付工具 (Dify),又具备深度定制能力 (LangGraph)
你的 Java/React 经验 决定了你能把系统搭建得多稳 (复杂架构能力),而你对 AI 工具的驱动能力 决定了你能跑得多快 (开发效率)。
这两个加上去,才是真正的 Full Stack AI Engineer。